特别是变形镁合金板材不仅具有的综合性能,而且还可以通过冲压等二次成形方法来制备各种形式的产品,表现出极其广阔的应用前景但由于纯镁及大部分镁合金都具有密排六方晶体结构,并且其轴比(c/a)值接近理想的密堆值,合金的晶格对称性低,普通条件下可以启动的滑移系较少。因此,采用常规轧制技术生产镁合金板材时,存在轧制工艺流程长、成品率低和生产成本高等问题,并且板材在轧制过程中还容易形成强烈的(0002)基面织构,大部分晶粒的(0002)基面都与轧板表面平行。具有该种织构的镁合金板材在二次加工时,由于基面处于硬取向,基面滑移和拉伸孪生都难以启动而容易开裂。为了解决上述问题,一方面需结合高温轧制、特殊轧制或晶粒细化的方法,并且还要对轧制温度、轧制道次、变形量等工艺参数进行优化来减弱基面织构的程度。目前,国内外有关镁合金加工成形工艺的研究仍然很缺乏,已有的研究也主要集中在AZ和AM系等镁合金,这将影响变形镁合金的拓展与应用。因此,对镁合金板材轧制成形工艺的系统研究成为一个非常重要的研究方向。
镁合金热轧板材的组织主要由孪晶、切变带等变形组织及细小的动态再结晶晶粒组成。动态再结晶是其主要的细化机制。热轧过程中,温度、变形量、变形速率等因素将会影响组织形态与再结晶的发生。具体为:高温促进位错滑移,增加形核率,可提高再结晶组织的比例;高应变速率使位错急剧堆积,应力集中得不到释放,抑制动态再结晶的形核;大变形量增加位错密度,促进再结晶形核。如大应变轧制(large strain rolling)就采用了大变形量来获得更多的细化组织,其晶粒尺寸可达到2μm~3 μm。热轧板材中孪晶等变形组织经过退火后将发生静态再结晶或回复,转化为更多的等轴晶。
研究表明,热轧过程中镁合金将形成强(0002)基面织构,基本特征为(0002)基面平行于轧面(图la)。这种织构由塑性变形过程中基面滑移、锥面滑移共同造成的,一般随着轧制道次的增多和板材厚度的减薄,织构将逐渐增强,当板材轧制到薄板时,形成较强的基面织构。经研究发现,热轧时采用大应变可以降低织构强度,退火也组织构有一定的弱化作用。
镁合金轧制是大规模工业化生产镁合金材料的重要手段,长期以来,由于镁合金板材变形性能不好,限制了镁合金板材的应用。通过对不同轧制方法的研究,有助于找到控制板材组织及织构的有效方法,使其既能得到细化组织产生超塑性,又能降低织构强度使各方向性能更加平均。从而大大的改善板材的变形性能,使镁合金板材得到更加广泛的应用。