同铝合金一样,镁合金铸锭也常常显现裂纹,不过镁合金的裂纹敏感性比铝合金的轻得多,型式也有较大差别,也可以分为热裂纹与冷裂纹,不过镁合金的冷裂纹相当少见,仅在MB5和MB7合金锭中偶尔出现,因此镁合金的热裂纹废品量占95%以上。
热裂纹
铸锭在有效结晶区间形成的裂纹称热裂纹。在结晶区间内收缩困难是产生热裂纹的主要原因。合金在给定条件下,凡是能缩小脆性区温度范围、减少脆性区内收缩困难的因素都可以减小热裂纹敏感性。
合金热裂纹敏感性高低可根据其脆性区内塑性A和线收缩ε的大小判断,即根据温度-塑性图可判断合金敏感性。还A大于0.5%的几乎不产生热裂纹。而当A=0时则称之为脆性区,这时产生热裂纹的几率可以说是了。合金脆性的上限≤固液区的上限,而其下限则≤固液区的下限。
对镁合金热裂纹敏感性有影响的主要因素:合金成分与工艺因素。
化学成分
实验证明,凡是能细化晶粒的因素都能降低合金脆性区的上限,也就是可以缩小脆性的温度范围。因为晶粒越细,则越有利于晶间变形,减少结晶时的收缩阻力,裂纹就不会产生了。例如向Mg+4.5%Zn合金添加0.8%Zr,其固相线由344℃提高到550℃,脆性区缩小了206℃,同时还降低了固液区内的线收缩和提高了固液区的塑性,这三者都有利于消除热裂纹。
另外,凡是增大共晶量的组元,都会提高合金的固液区内的塑性。因为增大共晶量,可增大晶界液膜厚度,从而有利于晶界变形,将大大改善补缩条件和裂纹“修复”条件,不但热裂数量减少,而且程度也显著减轻。
共晶量和裂纹敏感性并不是呈线性关系,当共晶量小于其一极限值时,裂纹倾向性小,当增加到某一值后,敏感性骤升,再继续加大共晶量,则敏感性又下降,一直到零。
镁合金的熔炼铸造工艺与铸锭品质对镁材质量、成品率高低攸攸相关,实践统计证明,镁材缺陷的75%以上都或多或少是由于铸锭带来的。镁合金锭的铸造的铸造工艺有:铁模铸造,水冷模铸造与半连续铸造。前两种工艺现在很少用了,所生产的锭坯还不到总数的5%。半连续铸造法的优点可概括为:
凝固速度快,改善了铸锭组织,减少了成分偏析,提高了锭坯的力学性能。
由于改善了熔铸系统,减少了氧化夹杂及其他非金属夹杂物,金属杂质含量也有所下降,合金纯净得到了很大提高。熔铸设备对MA8合金的纯净度也有一定的影响。
合理的结晶顺序,铸锭的致密度得到提高,锭中心的疏松大幅度地下降。
锭的长度有很大提高,切头、切尾等几何废料的相对量有很大减小。
实现了机械化或甚至半自动化生产,劳动条件得到很大改善,劳动生产率显著提高,产品品质也有很大提高。
当然,尽管半连续铸造法的优点很多,不可避免地也会存在一些不足之处,诸如:
铸锭内部因凝固速度快,会产生很大的内应力,而合金的塑性又不大,因而裂纹倾向性大,废品率比铁模铸造时的大得多,铁模铸造几乎无一裂纹。
由于凝固速度快,有些合金元素如锰会产生较严重的晶内偏析,为了消除这种缺陷,须进行长时间的均匀化退火,因而生产成本上升,而且性能得不到充分的。
由于凝固速度大,液穴内的温度梯度也会相应地上升,虽不利于金属中间化合物颗料的过于长大,但却使它易于产生。
压铸镁合金时采用熔剂熔炼会带来操作上的诸多困难,特别是热室压铸尤为不便,同时熔剂夹杂更加,上世纪70年代开发的无熔剂熔炼工艺在镁合金熔炼发展史上有着里程碑意义。大量研究表明,CO2、SO2、SF6等气体对镁及镁合金熔体有良好的保护作用,特别是SF6的效果尤为。
液态镁在干燥纯净的CO2中氧化速度慢,高温下可发生化学反应形成固态MgO与无定型碳,它可以填充于氧化膜间隙处,提高熔体表面氧化膜的致密性,同时还能强烈地抑制镁离子扩散到表面膜的表面,从而阻抑镁的氧化。
镁与SO2反应生成固态MgO与MgS,在熔体表面形成一层致密的保护性强的MgS-MgO复合膜层。
是一种人工制造的气体,它的密度为空气的4倍,在室温下很稳定,但SF6的混合气体发生化学反应时可能形成有刺激性的有毒气体。SF6与镁反应可生成固态MgF2与SO2F2.MgF2的致密度高,可与MgO形成连续的致密氧化膜。值得注意的是,SF6应是干燥的,否则水分会大大加剧镁的氧化,还会生成有毒的HF气体。
保护气氛
是一种非常有效的保护气氛,能显著降低镁的烧损,得到普遍采用。实验表明,保护气氛中含有0.01Vol.%SF6就有的保护功能,但在实际操作中,为了补充SF6与熔体反应和泄漏损耗,SF6的浓度应高些。SF6保护气氛有两种:干燥空气与SF6的混合物,干燥空气、CO2、SF6的混合物。
的价格高且有潜在温室产应,就尽量控制SF6的排放量。保护气氛中的SF6浓度不得超过2Vol.%,否则会引起坩埚损耗。SF6是影响镁合金生命周期(LCA)的主要因素,也是制约镁成为21世纪绿色材料的关键因素。2000年国际镁业协会(LMA)呯吁行业开发新的保护气体以取代SF6。
镁是轻的结构材料,优点多,随着汽车对产品轻量化和节能减排等要求的提高,为镁的发展创造了大好机遇,成为世界一些国家开发与研究的热门课题,但是国际上对镁及镁合金产品生命周期的环境影响还缺乏全面系统的分析和评价,这也成为制约其大量使用的一个重要因素。目前,德国、澳大利亚和中国等的冶金科学家和材料界人士正致力于原镁提取工艺过程及其产品的LCA研究,取得了可喜的成果。2003年澳大利亚科学家的研究表明,电解法提取原镁的温室气体排放为20.4~26.4kgCO2当量/kg·Mg,而中国皮江法炼镁(含生产硅铁的电耗)的为37~47kgCO2当量/kg·Mg,后者的约为前者的2倍,这成了国际上对中国皮江法炼镁环境影响的负面评价。然而,北京工业大学材料环境协调性评价中心新的研究结果表明,2009年中国较的皮江炼镁法的温室气体排放强度为25.6kgCO2当量/kg·Mg,几乎与电解法的平均水平相当,而且还有进一步降低的空间。这得益于原镁提取过程中采取了综合的节能减排措施,例如全面改造炉窑,采用清洁能源、蓄热式高温空气燃烧技术及余热利用技术等。
与铝工业的LCA研究工作相比,对镁及其产品的LCA研究还处于初级阶段。铝、镁等轻质材料是减重的佳材料,对于以汽车为代表的交通运输工具轻量化、节能减排具有十分重要的意义。国际铝业协会在一份报告中称,汽车质量每减轻10%,油耗可降低6%~8%,有研究指出,汽车多用1kg铝在服役期间排放的CO2就可以下降约20kg;如果每辆汽车使用70kg镁合金,每年排放的的CO2可减少30%以上。
用仪表板横梁通常采用钢管和钢板冲压件组合焊接制造,此类钢制仪表板横梁总成的组成零件数量多,需要焊接组装,不利于尺寸控制,且整体重量大,不符合轻量化理念。而根据文献报道,采用镁合金压铸的仪表板横梁可减重50%以上,轻量化效果非常明显。主要是因为镁合金是目前应用的金属结构材料中轻的,具有密度小,比强度和比刚度高,阻尼性、切削加工性和铸造性能好等优点,因此镁合金仪表板横梁在国外汽车产品中得到广泛的应用。
本文主要从设计选材、结构优化和性能验证等方面,简要介绍AM60B镁合金在奇瑞某车型的仪表板横梁上的应用情况。
镁合金仪表板横梁的特点
镁合金仪表板横梁与钢制仪表板横梁相比具有以下特点:
(1)轻量化 镁合金的密度为1.78g/cm3,仅为钢密度的1/4,减重在50%以上。
(2)零件集成化程度高,尺寸稳定 与钢制件相比,镁合金仪表板横梁采用整体压铸的生产工艺,可以把传统钢质CCB的20多个零件集成为一个件。
(3)安装尺寸精度高 由于采用整体压铸,尺寸精度很高,所有的尺寸公差都可以控制在0.5mm以内,解决目前钢骨架安装过程中的干涉和异响等问题。
(4)设计灵活 由于采用压铸工艺,产品工艺性好,零件形状的设计自由度大。
(5)绿色环保 镁合金材料可以回收利用。
镁合金的选择
目前镁合金的种类有很多,汽车工业采用较多的是AM系和AZ系合金,常用镁合号主要有AM60B和AZ91D。其中AM60B的铝含量较低,由于随着铝含量的降低,材料的韧性逐渐增高,故与AZ91D相比,AM60B的韧性和塑性较好。AM60B是高纯牌号,因此具有和AZ91D一样优良的耐蚀性能,且与A380铝合金相比,耐蚀性更加。
本文所介绍的仪表板横梁形状复杂、体积庞大而且壁厚不均,要求承载各种仪表仪器,因此需具有较高的韧性和强度。通过综合考虑AM60B和AZ91D的性能以及参考有关文献资料,终决定选用AM60B(性能见表1)作为制造仪表板横梁的材料。
表1 AM60B镁合金的化学成分和物理性能