典型镁合金材料生产流程:锭坯加热→一次挤压→切中间坯料→加热→二次挤压→人工时效→拉伸矫直→切头尾与取试样→辊式矫直→手工矫直→检查→切成品与打印→氧化着色→成品检查→包装→入库→发运。
大家都比较熟悉铝合金材料挤压的过程,但对于镁合金的挤压过程可能较为陌生,因此,需要特别注意。众所周知,铝合金锭坯可在燃油炉、燃气炉、空气电阻炉、感应电炉中加热,然而,镁合金锭坯只允许在空气电阻炉内加热。笔者挤压镁合金时,在加热铝合金的燃油炉内加热镁合金,结果着火了,幸好没伤人,也没造成火灾;还有一次,在加热铝扁锭的电阻炉内加热镁锭也着火了。因此,在加热镁锭坯时应特别小心。
镁合金锭坯的加热温度不高,为防止燃烧,加热温度宜≤470℃,而铝合金的高加热温度可达550℃;镁合金的大挤压速度为20m/min,比硬铝的快,但仅为软铝合金的1/3;热挤压镁合金材料的收缩率比铝合金的大,在设计模具时应注意;挤压镁材的拉矫不可在室温进行,宜加热到150℃~250℃,且须用拉矫机,而铝合金的拉矫可在室温下进行。
ZK60A合金挤压材
ZK60A镁合金是一种不含Al的Mg-Zn系合金,含Zn4.8-6.2、Zr 0.45,共余为Mg,Zr的含量一般为0.5%。F及T5状态挤压材的室温平均弹性模量44.8GPa。室温抗拉强度/伸长率:F材料的340MPa/14%,T5材料的305MPa/11%;室温屈服强度:F材料的360MPa、T5材料的305MPa。
ZK60A合金挤压材纵向试样回转梁(R=-1)轴向负载(R=0.25)的室温疲劳断裂试验结果见图1-图4。
ZK60A合金锻件
ZK60A-T5合金锻件的回转和弯曲梁(R=-1)疲劳强度见图5及图6,纵向试样,带切口,Kt=2,经机加工和抛光,试样取自车轮轮缘。
弹性模量室温平均值44.8MPa、室温抗拉强度/伸长率305MPa/16%、室温屈服强度205MPa的ZK60A的切线和轴向轮缘回转和弯曲梁试样的室温疲劳强度见下表,试样经抛光。
在镁合金的应用产品中,压力加工产品、铸造产品以及非结构应用呈三足鼎立之势,自镁实现工业化应用以来,镁在冶金工业(配制铝合金、钢脱硫、球墨铸铁等)中的应用占50%-65%,加工镁及镁合金半成品(板、带、管、棒、型材)材料的占比很小,仅为1%-1.6%,挤压材(管、棒、型材)占的比例更小,只有0.4%-0.8%。因此,每年须进行表面处理的挤压镁材量不多。挤压镁材的表面处理方法有氧化着色、阳极氧化、电镀等。
挤压镁材的氧化着色
挤压镁材氧化着色工艺流程及参数见表1,其预处理(脱脂、水洗、酸洗、光亮蚀洗)及氧化处理后的水洗等处理与前面介绍的相同。
槽液配制与管理
根据槽的容积计算所需的化工产品,加水至1/2容积,将化工产品一一加入槽中,对除油槽与氧化槽加热、开风机、搅拌,而对酸洗槽与光洗槽在室温下开风机、搅拌。搅均后加水至规定容积,再搅拌均匀,取样分析,试氧化,合格后方可正式生产。在使用期间应定期对槽液成分进行化学分析。
氧化膜缺陷修补
挤压材表面上的氧化膜应均匀、牢固,若检查不合格,可作如下修补:
清除不合格膜层,重新处理。
局部清除有缺陷的氧化膜,再用补色液着色,常用的补色液见表2。用汽油或工业酒精擦净油污后,用玻璃砂布轻轻打磨,露出干净的镁,以压缩空气吹净粉尘,用浸以酒精液的纱布擦净表面,晾干后用缠锦纱或棉花的玻璃棒或木棒,蘸上氧化液在表面上反复涂擦约35s,晾干后即可。
汽车产业中镁合金用量较多的国家和地区主要是北美、欧洲、日本和韩国,1991年汽车工业中镁合金的用量仅为2.4万吨,到1997年则增至6.4 万吨,目前这些国家和地区汽车工业对镁合金的需求已达到每年40万吨。欧洲正在使用和研制的镁合金汽车零部件已超过60种,单车镁合金用量9.3公斤~20.3公斤;北美正在使用和研制的镁合金汽车零部件已超过100 种,单车镁合金用量5.8公斤~26.3公斤;我国汽车镁合金产业的总体技术水平不高,在汽车镁合金部件设计、制造加工等方面还有较大差距,平均单车用镁量不足1公斤。经过近几年的发展,已有20余种汽车零部件可以采用镁合金生产。
我国在汽车轻量化方面起步较晚,早将镁合金应用到汽车上的企业是上汽集团。上世纪90年代,在桑塔纳轿车上采用镁合金变速箱壳体、壳盖和离合器外壳,单车用镁合金共约8.5kg。一汽集团开发了抗蠕变镁合金,用于制造高温负载条件下的汽车动力系统部件,同时顺利研发出气缸盖罩盖等镁合金压铸件。同时,东风汽车公司、长安汽车集团也参与到镁合金零部件的生产之中,尤其需要指出的是长安集团生产的“长安之星”微型车上实现了单车用镁8kg的水平,达到了目前的国际水平。在镁合金工艺方面,镁合金汽车轮毂成型技术无疑是一大亮点。
在国家研发计划的支持下,在与东风汽车股份有限公司合作中,上海交大正在针对进行有关汽车用减震台和副车架结构设计,旨在早日实现镁合金在减震塔和副车架两类大型复杂薄壁部件的成型技术与应用上的突破。
目前,汽车工业平均用镁量在10 公斤以内。从2000年开始,各国和研发机构投入大量的资源进行镁合金的研发和产品的推广,特别是我国作为镁合金资源的大国,一直希望将镁合金在汽车工业中的用量进一步提高。但是,车用镁合金的用量并没有出现预期的大幅增长,主要的镁合号还是以AZ91D和AM50为主,主要的镁合金产品以方向盘骨架、仪表盘骨架、座椅骨架等内饰部件。限制镁合金大规模应用的一个主要原因还是由镁合金特性决定的,镁合金的耐腐蚀性能差,特别是电偶腐蚀是困扰镁合金在非内饰承载部件系统中应用的大阻力。
汽车轻量化和部件集成化的发展趋势,能够发挥镁合金材料流动性好、易成形大型复杂结构件的优势,将促使镁合金的新的大规模应用,例如:车门内板和行李箱后盖内板,采用压铸镁合金可以实现优轻量化和结构优化的效果。目前,我国具有多的镁合金矿产和冶炼资源,也具有大吨位压铸装备的下游生产企业,在该领域我国已经形成了为完整的产业链,能够实现从原镁到镁合金压铸件的全流程生产和制造。
镁合金转向管柱支架
现在在一款新能源车型的转向系统的开发中,引用了以镁合金为材料设计成型的转向支架和导向筒。由于镁合金的刚度,不会在安装后随车身支架的变形而产生变形,全面转向系统在整车碰撞过程中转向管柱可以按照设计的行程和吸能曲线完成整个动态溃缩过程,提供整车碰撞的安全性,并且大大提高了这个转向系统的刚度和频率,而且做到了轻量化设计,其质量较之常规车型原件减轻了5%以上。
镁合金仪表板骨架
常规车型的仪表板骨架更多是采用钢件焊接制成,为了满足汽车轻量化这一要求,需要在原本功能的基础上,确保装配面与孔的部位不改变,所以,将仪表板骨架零部件替换为镁合金。镁合金仪表板骨架制作时主要应用挤压、弯曲这两种工艺,所有镁合金件之间以氢弧焊进行连接。因为,镁合金与钢这两种材料接触之后会被腐蚀,所以仪表板骨架和车身、仪表板等零部件进行连接,建议采用钢质渗铝螺栓作为连接件。经过实践得知,轻量化镁合金仪表板骨架的质量是1.957kg,相比常规车型所采用的原钢件质量减轻了62.9%。
镁合金副驾驶座椅骨架
常规车型的驾驶座椅骨架主要为钢件,其中包括靠背骨架、座垫骨架和滑轨。因为,常规车型的改制存在一定的限制,按照轿车座椅设计的有关规定,为了汽车性能,将副驾驶座位的椅骨架替换为镁合金。制作工艺主要应用挤压、弯曲和冲压,镁合金件的焊接技术为氢弧焊,使用结构胶连接所有材料零部件。经过实践之后,镁合金副驾驶座椅骨架的质量显示为12.66kg,和钢结构件对比质量减轻了8.3%。
镁合金前、后副车架
为镁合金前、后副车架技术参数能够满足规定要求,需要完善原本的结构设计。设计过程中,通过楔形加强筋、局部位置设置纵向加强梁以及局部增厚这三种要求进行结构设计,并对终设计成果展开验证、分析,可以得出设计而成的镁合金前、后副车架技术参数与规定相符。这一部分所应用的工艺主要有挤压、弯曲和整形,焊接制造则是以分段制造、环形焊与角焊为主,结束焊接操作之后压入支承套橡胶内衬,使用螺栓连接轿车,同时设置复合材料垫圈,达到良好的联接效果。经过轻量化设计之后的镁合金前、后副车架,其质量与钢件相比分别减轻了50.5%、62.3%。
镁合金轮辋
按照镁合金制造的有关规定,轮辋小辐条根部位置要进行挖深处理,镁合金车轮要满足性能要求,弯曲疲劳、径向疲劳的大应力相比镁合金材料的疲劳强度小于110MPa,使用期限超过107次。经过实践可知,轻量化设计之后的镁合金轮辋质量降低为7.9kg,相比铝合金材料的轮惘减轻了37%。
3D打印
3D打印技术是诸多新技术的一种,是以新车模型、工具的实际运用为前提研发的技术。通过扫描镜、激光束等部件制作镁合金零部件,有效提升了零部件制作的速度。如今,3D打印技术已经在汽车企业中实现普及,节省研发成本的同时很好的提升了研发效率,可以满足要求多、批量小的客户。
用于制造汽车零部件的镁合金种类较多,包括Mg-Mn合金、Mg-Zn合金和Mg-Al合金。其中,Mg-Al合金用量大,因为添加Al元素能提高镁合金的强度及铸造性能,而且成本较低。在Mg-Al合金加入少量Mn元素可降低杂质Fe的含量比。基于Al、Mn元素设计的镁合号有AZ系列的AZ91D和AM系列的AM60等。