WE43镁合金棒耐腐蚀,高使用寿命:
真空下无熔剂熔炼,避免使用熔剂保护,也就避免了熔剂夹杂,提高了镁合金产品的机械性能、耐腐蚀性能,从而大大延长服役寿命。
WE43镁合金棒气渣含量少,成品率高:
由于真空度的存在,氢分压接近于零,镁液中气体可以自发溢出,减少镁液含气量,同时有利于减少镁合金缩松缺陷。真空下镁合金氧化大为减少,从而减少夹渣缺陷。
WE43镁合金棒降低生产成本:
稀土元素可以提高镁合金室温和高温性能,但其价格较贵,化学性质活泼,在大气下熔炼容易烧损及与熔剂反应沉降,而使其收得率大幅降低,同时由于添加熔剂,熔炼用锅底残液较多,不可回用,从而使材料成本大大增加。
我们公司采用真空无熔剂熔炼,可大大减少稀土元素的烧损,元素收得率可达95%以上,约降低材料生产成本10-20%,为客户持续创造价值。
来自麻省理工的研究人采用SLM技术进行了WE43镁合金棒的增材制造。并对沉积态、热等静压和热处理后的组织和机械性能以及腐蚀性能进行了对比研究。SLM沉积态的组织得到细化,优化SLM工艺参数之后进行热等静压,其缺陷率小于0.1%。电化学测试结果表明SLM制造的WE43镁合金棒比铸造态更易腐蚀。这是因为富集了富Zr氧化物的原因且均匀分布,同时由于SLM的快速冷却改变了固溶的基材的组织。氧化物颗粒主要来自粉末。结果表明SLM制造的Mg合金性能可以得到增强,只要对粉末的粉末特征能够更加充分的理解和控制。
直到今天,针对Mg合金的AM制造依然局限于非常少量的镁合金系统,如AZ系和ZK系以及稀土镁合金。镁合金的AM研究的发展的时间轴也表明:大多数的镁合金AM制造集中在2010年以后,包括3D打印制造复杂形状的具有特殊用途的生物器件。近的研究主要集中在AM制造WE43镁合金棒上。WE43镁合金棒 镁合金是一种Mg-Y-RE系合金。对WE43镁合金棒感兴趣的原因在于合金中含大约4wt%的Y和3%的RE(一般是混合Nd、La和Ce,同时含小于0.5wt%的Zr,Zr的作用是细化晶粒)。含稀土镁合金包括WE43镁合金棒 和WE54, 具有提高室温和高温机械性能的能力(如拉伸和蠕变)。这一性能的提高是靠形成了热稳定性比较高的金属相来实现的。与此同时,耐蚀性和铸造时的合金耐热性(燃点提高)也相应的提高。
同时进一步的探讨SLM制造镁合金的工艺-显微组织-腐蚀性能之间的关系。尤其是SLM制造镁合金的腐蚀性能,直到今天,研究的尚不多。而镁合金的腐蚀性能的研究是限制镁合金应用的一个关键环节。为了充分发挥AM制造镁合金的优势和发挥出镁合金性能的优势,非常有必要采用AM技术制造镁合金来弥补现阶段的研究短板。因此,本文报道了SLM技术制造WE43镁合金棒的显微组织、电化学性能和腐蚀性能。相应地热等静压和热处理后的显微组织、电化学行为好腐蚀行为也进行了比较研究。
EV31A镁合金和WE43C镁合金在300℃高温下具备较高强度主要是由于添加稀土Nd、Gd、Y元素引起的固溶强化和析出强化。然而,镁合金的耐蚀性较差,极易产生应力腐蚀开裂(SCC)和氢致开裂。通常变形镁合金比铸造镁合金更容易产生应力腐蚀开裂。关于镁稀土合金在慢应变速率测试条件下的应力腐蚀开裂已有较多研究,但由于这种测试条件下试样受到持续的拉伸应力,在试样表面形成的钝化膜可能处于不稳定状态,因此难以探究稳定钝化膜对应力腐蚀开裂的作用。此外,前期研究表明:铁基合金中位错堆积易导致裂纹萌生,位错堆积的形态也会影响合金的应力腐蚀开裂行为。然而,目前关于变形特性对于镁合金表面钝化膜的击穿和应力腐蚀开裂行为的影响尚无充分研究。
FLD实验的困难和费时特性要求对FLD进行数值测定。M-K理论是计算成形极限的的不稳定性理论之一,并在多年来得到进一步发展。结合M-K理论的结晶塑性方法被广泛应用于面心立方(FCC)和体心立方(BCC)板材的成形极限分析。热变形中的DRX建模已经有了一些研究,这些研究通过耦合晶体塑性集成了力学响应、微观组织演变和织构发展的模拟。在他们的工作中,也实施了伴随DRX的超塑性机制,并评估了WE43合金在550 K以上由大量非常小的核引起的另外明显的应力软化。然而,到目前为止,基于晶体塑性的FLD预测还没有将DRX作为一个操作机制,将退火效应作为一个影响因素。