镁(Mg)和镁合金已成为结构部件的竞争性替代品,因为运输中对高强度重量比材料的需求不断增长。尽管如此,制造镁部件的一个重要限制是织构镁合金的大拉伸-压缩屈服不对称性,这导致变形过程中的早期断裂。这种行为基本上可以归因于在拉伸和压缩过程中激活的不同变形机制,这是由于热机械加工产生的强烈纹理以及{10`1 2}延伸孪生的极性。
降低锻造镁合金屈服不对称性的策略是相关的,并且近几十年来受到了的关注。它们可以总结为(i)通过增加延伸孪生的临界分离剪切应力(CRSS)的比率来抑制延伸孪生的成核和生长,通过溶质原子的存在和沉淀物,并减小晶粒尺寸;(ii)通过添加稀土(RE)元素或采用多步热机械工艺来削弱质地。前者的典型案例是Stanford等人的研究,他们报告说AZ91 Mg合金的压缩屈服强度(CYS)与拉伸屈服强度(TYS)之比从固溶条件下的0.75增加到时效条件下的0.91。产量不对称性的降低归因于沉淀物与延伸孪生体的强烈相互作用 —— 这限制了缠绕量 —— 而它不影响棱柱滑移。
而在这几十年的变迁中,镁合金一般会被用于新能源四轮车的外壳或底盘。它的优势在于比铝合金更轻,能够保持高抗拉强度和阻尼能力,延伸率和冲击抗力则明显好于压铸铝合金,具有优良的力学性能。同时它的流线造型堪比碳纤维,可以做出如跑车级的外观设计,但价格却远远低于碳纤维等流行的轻质材料。
镁合金凭借其的优势,被更多的自行车厂商发现,被用在自行车的重要承重结构——车架上。因为车架是所有整体重量集中的部件,选择轻质且综合力学性能较好的镁合金是再合适不过了,特别适用于休闲类自行车及折叠自行车上,其炫酷多变、概念化的外形也能成为时下趋势电动自行车的绝妙搭配。
镁合金作为医用金属材料使用时,在某些情况下,材料需要经历较大的塑性变形过程。比如镁合金心血管支架在进行介入手术过程中,需要经受压握,使支架贴附于球囊,然后利用传输装置运送至血管中发生病变的部位, 再利用球囊的膨胀使支架扩张,从而扩开发生狭窄的血管, 后把携带球囊的导管抽出体外,完成支架介入手术。
在挤压棒材上利用线切割加工出 Φ10×2 mm的片状试样,然后依次使用400#、800#、1200# 和2000# 的Si C砂纸打磨。把打磨好的样品,放置于装有酒精的烧杯中,超声波清洗5 min后,电吹风吹干备用。实验过程中,将试样浸泡于装有Hank’s溶液的离心管内,置于37 ℃的恒温箱内,模拟材料在人体内的降解行为,试验样品表面积(cm2) 与Hank’s液体体积(m L)的比例为2.5:1,每种合金选取9个平行样。在浸泡过程中,每24h记录一次Hank’s溶液的p H之变化,并更换一次溶液以保持溶液的p H值保持在正常的人体范围内。分别于1、2、3周后,每种合金取出其中3个样品,放入25wt.% 的铬酸中超声清洗3min以除去样品表面腐蚀产物,然后依次使用水和酒精进行清洗,电吹风吹干后用电子天平称重,计算出平均腐蚀速率,并使用扫描电子显微镜观察样品的腐蚀形貌。平均腐蚀速率的计算公式为 :
平均腐蚀速率=(K×W)/(A×T×D) (1)