来源:上海隆司新材料科技有限公司 时间:2025-01-22 02:49:21 [举报]
典型镁合金材料生产流程:锭坯加热→一次挤压→切中间坯料→加热→二次挤压→人工时效→拉伸矫直→切头尾与取试样→辊式矫直→手工矫直→检查→切成品与打印→氧化着色→成品检查→包装→入库→发运。
大家都比较熟悉铝合金材料挤压的过程,但对于镁合金的挤压过程可能较为陌生,因此,需要特别注意。众所周知,铝合金锭坯可在燃油炉、燃气炉、空气电阻炉、感应电炉中加热,然而,镁合金锭坯只允许在空气电阻炉内加热。笔者挤压镁合金时,在加热铝合金的燃油炉内加热镁合金,结果着火了,幸好没伤人,也没造成火灾;还有一次,在加热铝扁锭的电阻炉内加热镁锭也着火了。因此,在加热镁锭坯时应特别小心。
镁合金锭坯的加热温度不高,为防止燃烧,加热温度宜≤470℃,而铝合金的高加热温度可达550℃;镁合金的大挤压速度为20m/min,比硬铝的快,但仅为软铝合金的1/3;热挤压镁合金材料的收缩率比铝合金的大,在设计模具时应注意;挤压镁材的拉矫不可在室温进行,宜加热到150℃~250℃,且须用拉矫机,而铝合金的拉矫可在室温下进行。
从金属变形的的主变形方式可知,轧制的主变形方式是双向延伸、一向压缩的,因此,轧制不利于充分发挥镁合金的塑性能力,镁合金轧制板带材轧制工艺并不是一种主要的工艺,在镁及镁合金的半成品产量中,平轧材也不是多的。在书面材料中,不宜把“轧制”写成“压延”,因为在国标GB/8005.1中并没有“压延”一词,只有“轧制”一词;同时,在商务印书馆出版的第3版《新华大字典》中也无“压延”一词,只有“轧制”。
镁及镁合金晶体结构为密集六方晶格,塑形变形能力不强,所以轧制板材时多采用塑性较高的AZ31和M1A合金。铝合金及铜合金晶体都是面心立方晶格,有很高的塑性,可轧成很薄的箔材。板材可按其厚度分为厚板与薄板,对铜合金及铝合金来说,厚板是指厚度>6mm的板材,现在航空航天工业用的铝合金厚板厚度已达250mm;≤6mm的板材称为薄板。对镁合金板材来说,一般把原度11mm~70mm的称为厚板,厚度≤10mm的称为薄板。
由于镁合金的变形能力有限,为使锭坯获得大的变形量和减少裂纹产生,大都进行热轧,热轧温度300℃~450℃,可根据合金选择温度,热车道次压下率为10%~30%,铝合金的热轧道次压下率可达50%。在镁合金热轧时,若轧件温度降到315℃,则需要重新加热,以热轧的进行。
AZ31B-F合金挤压材的室温平均弹性模量44.8 GPa,抗拉强度260 MPa,伸长率15%,屈服强度200 MPa。室温下光滑试样于干燥大气中、水中、含冷凝水空气中和其它物质中进行。
轴向负载(R=0.25)疲劳断裂试验时,其疲劳性能与疲劳寿命见表。
美国衣阿华大学的斯蒂芬斯(R. I. Stephens)和施拉德(C.D. Schrader)用 12.7 mm 厚的AZ31B- H24镁合金测试了它在室温试验室条件的疲劳裂纹成长特性(见下图)。试样的平均室温弹性模量44.8 GPa,抗拉强度250 MPa,伸长率21 %,屈服强度150 MPa,负载条件R=0.1、0.4、0.7,试样取向T-L、厚12.7 mm,频率5Hz-50 Hz。
现阶段镁合金在汽车上的应用主要集中于车身、发动机和内饰件3大部分,产量持续快速增长。欧洲范围内,60多种汽车零部件已采用镁合金为材质,车用镁合金铸件的使用量正在以年均25%的速度增加;北美是世界上镁合金在汽车中用量大,使用和研发中的镁合金零部件有100多种;日本汽车业在越来越多的零件上采用镁合金材质,包括变速杆、座椅架等。大众公司的帕萨特、奥迪A4和A6等汽车的齿轮箱壳体使用AZ91D镁合金,比铝合金部件减重25%。美国福特、美国通用、日本三菱等汽车公司已采用镁合金零部件替代原有的铝合金汽车零部件和塑料零部件,包括:发动机壳体和盖、变速箱壳体和盖、离合器壳体、液力变扭器壳体、发电机托架、刹车踏板支架、车身壳体框架、车门、车轮、方向盘、仪表盘、后桥驱动器、转向节、座椅支架、把手等100多种零部件。
汽车产业中镁合金用量较多的国家和地区主要是北美、欧洲、日本和韩国,1991年汽车工业中镁合金的用量仅为2.4万吨,到1997年则增至6.4 万吨,目前这些国家和地区汽车工业对镁合金的需求已达到每年40万吨。欧洲正在使用和研制的镁合金汽车零部件已超过60种,单车镁合金用量9.3公斤~20.3公斤;北美正在使用和研制的镁合金汽车零部件已超过100 种,单车镁合金用量5.8公斤~26.3公斤;我国汽车镁合金产业的总体技术水平不高,在汽车镁合金部件设计、制造加工等方面还有较大差距,平均单车用镁量不足1公斤。经过近几年的发展,已有20余种汽车零部件可以采用镁合金生产。
我国在汽车轻量化方面起步较晚,早将镁合金应用到汽车上的企业是上汽集团。上世纪90年代,在桑塔纳轿车上采用镁合金变速箱壳体、壳盖和离合器外壳,单车用镁合金共约8.5kg。一汽集团开发了抗蠕变镁合金,用于制造高温负载条件下的汽车动力系统部件,同时顺利研发出气缸盖罩盖等镁合金压铸件。同时,东风汽车公司、长安汽车集团也参与到镁合金零部件的生产之中,尤其需要指出的是长安集团生产的“长安之星”微型车上实现了单车用镁8kg的水平,达到了目前的国际水平。在镁合金工艺方面,镁合金汽车轮毂成型技术无疑是一大亮点。
在国家研发计划的支持下,在与东风汽车股份有限公司合作中,上海交大正在针对进行有关汽车用减震台和副车架结构设计,旨在早日实现镁合金在减震塔和副车架两类大型复杂薄壁部件的成型技术与应用上的突破。
目前,汽车工业平均用镁量在10 公斤以内。从2000年开始,各国和研发机构投入大量的资源进行镁合金的研发和产品的推广,特别是我国作为镁合金资源的大国,一直希望将镁合金在汽车工业中的用量进一步提高。但是,车用镁合金的用量并没有出现预期的大幅增长,主要的镁合号还是以AZ91D和AM50为主,主要的镁合金产品以方向盘骨架、仪表盘骨架、座椅骨架等内饰部件。限制镁合金大规模应用的一个主要原因还是由镁合金特性决定的,镁合金的耐腐蚀性能差,特别是电偶腐蚀是困扰镁合金在非内饰承载部件系统中应用的大阻力。
汽车轻量化和部件集成化的发展趋势,能够发挥镁合金材料流动性好、易成形大型复杂结构件的优势,将促使镁合金的新的大规模应用,例如:车门内板和行李箱后盖内板,采用压铸镁合金可以实现优轻量化和结构优化的效果。目前,我国具有多的镁合金矿产和冶炼资源,也具有大吨位压铸装备的下游生产企业,在该领域我国已经形成了全球为完整的产业链,能够实现从原镁到镁合金压铸件的全流程生产和制造。
镁合金转向管柱支架
现在在一款新能源车型的转向系统的开发中,引用了以镁合金为材料设计成型的转向支架和导向筒。由于镁合金的刚度,不会在安装后随车身支架的变形而产生变形,全面转向系统在整车碰撞过程中转向管柱可以按照设计的行程和吸能曲线完成整个动态溃缩过程,提供整车碰撞的安全性,并且大大提高了这个转向系统的刚度和频率,而且做到了轻量化设计,其质量较之常规车型原件减轻了5%以上。
镁合金仪表板骨架
常规车型的仪表板骨架更多是采用钢件焊接制成,为了满足汽车轻量化这一要求,需要在原本功能的基础上,确保装配面与孔的部位不改变,所以,将仪表板骨架零部件替换为镁合金。镁合金仪表板骨架制作时主要应用挤压、弯曲这两种工艺,所有镁合金件之间以氢弧焊进行连接。因为,镁合金与钢这两种材料接触之后会被腐蚀,所以仪表板骨架和车身、仪表板等零部件进行连接,建议采用钢质渗铝螺栓作为连接件。经过实践得知,轻量化镁合金仪表板骨架的质量是1.957kg,相比常规车型所采用的原钢件质量减轻了62.9%。
标签:挤压镁合金镁挤压坯料,洛阳挤压镁合金,经营挤压镁合金,生产挤压镁合金