关键词 |
九龙挤压镁合金板,鄂尔多斯挤压镁合金出售,沙坪坝供挤压镁合金,河北挤压镁合金价格 |
面向地区 |
全国 |
镁合金因其的性能被广泛应用在航天、通信等领域中。近年来,由于镁合金具有的生物安全性、可降解性以及生物力学相容性等特点,在生物医用合金应用上被广泛地关注与研究。但由于镁合金为密排六方结构导致其在室温下的塑性较差,限制了生物医用镁合金的加工成形与应用。
合金化是提高镁合金力学性能的一个重要途径。添加少量Zn可显着改善合金的力学性能,且对人体害作用。挤压态的Mg-Zn 合金有望发展成为理想的可生物降解的骨组织工程植入物。Zr元素具有的生物相容性和骨相容性,是一种良好的晶粒细化剂添加元素,常用于改善镁合金的力学性能。
针对生物医用镁合金管材加工制备,主要是通过直接挤压成形或者通过挤压成形后进行多道次的拉拔成形。挤压镁合金可以获得细化均匀的晶粒,具有更高的强度和更好的延展性,能满足多样化结构部件的需求。但是由于镁合金的塑性较差,因此如何改善挤压镁合金的显微组织、提高合金的力学性能成为关键。不同的挤压工艺参数会导致镁合金挤压管材的显微组织和力学性能存在差异,但如何在不改变挤压工艺参数下,通过改善合金初始组织从而提高合金的力学性能的研究报道较少。
电磁搅拌后,Mg-4Zn-0.3Zr合金晶粒细化且更加均匀,平均晶粒尺寸从91.3μm 降低到85.7μm。合金中的MgZn相数量减少,在晶粒内部有孪晶形成,且存在较多的小角度晶界。另外,抗拉强度和屈服强度分别为189 MPa和105 MPa,伸长率提高到17.3%。由于电磁搅拌合金中的孪晶和小角度晶界的存在,经热挤压后,电磁搅拌Mg-4Zn-0.3Zr合金动态再结晶的程度高,晶粒更加细小,抗拉强度、屈服强度和伸长率分别达到了241 MPa、178 MPa和25.2%。
降低锻造镁合金屈服不对称性的策略是相关的,并且近几十年来受到了的关注。它们可以总结为(i)通过增加延伸孪生的临界分离剪切应力(CRSS)的比率来抑制延伸孪生的成核和生长,通过溶质原子的存在和沉淀物,并减小晶粒尺寸;(ii)通过添加稀土(RE)元素或采用多步热机械工艺来削弱质地。前者的典型案例是Stanford等人的研究,他们报告说AZ91 Mg合金的压缩屈服强度(CYS)与拉伸屈服强度(TYS)之比从固溶条件下的0.75增加到时效条件下的0.91。产量不对称性的降低归因于沉淀物与延伸孪生体的强烈相互作用 —— 这限制了缠绕量 —— 而它不影响棱柱滑移。
而在这几十年的变迁中,镁合金一般会被用于新能源四轮车的外壳或底盘。它的优势在于比铝合金更轻,能够保持高抗拉强度和阻尼能力,延伸率和冲击抗力则明显好于压铸铝合金,具有优良的力学性能。同时它的流线造型堪比碳纤维,可以做出如跑车级的外观设计,但价格却远远低于碳纤维等流行的轻质材料。
————— 认证资质 —————